Articles Blockchain Software Development Web Technologies

Storing and Retrieval of Structured Data on Blockchain with BlockChi and Ethereum

Abstract: BlockChi creates an easy way of storing and retrieving data on the blockchain. It is a technology that solves some of the current limitations of blockchain storage and public blockchain networks that have transaction payload support. It allows parties to author, publish, extend and access data records in a decentralized, immutable and secure manner, supports complex data types, such as structured data and media, supports metadata to allow anonymously, identified or trusted publishing. BlockChi format is compatible with various blockchain networks. Data is presented as a JSON object, encoded in hexadecimal format and contained in the payload of blockchain transaction(s). There is an Ethereum implementation – BlockChiEth, which is a JavaScript class that allows frontend and backend applications (DAPPs) to interact with Ethereum blockchain.

Blockchain Software Development Web Technologies

Cryptocurrency Plugin for WordPress

Cryptocurrency All-in-One is a project of mine that that I started in 2016. My idea back then was to help making cryptocurrencies more popular. I liked the whole idea of decentralized currencies and the blockchain technology. But back then cryptocurrencies lacked the high level tools for developers to integrate them easily into real-life projects. I decided to help web developers and start-up owners to adopt Bitcoin, Ethereum and other cryptocurrencies by providing a free and simple to use WordPress plugin and that was how Cryptocurrency All-in-One came into existence. I submitted the first version to the repository in August 2016.

Articles Software Development Web Technologies

VisagiSMile – Dental Software for Digital Smile Design

Abstract: For achieving an optimal esthetic result from a dental treatment we need to create a suitable smile design that creates a perception which fulfills the esthetic expectations of the patient. It is also important that the teeth proportions to be correctly diagnosed and designed before an irreversible restorative dental procedure to be done.

Excellent quality digital smile design software products exist on the market. However these solutions do not apply in its fullness the visagism concept which produces a smile design in relation to the facial type and personality of the patient which is perceived as more harmonious. The visagism concept has been recently applied in the dental software “VisagiSMile” which helps clinicians to personalize and improve smile designs.

VisagiSMile is a software that automates the process of creating personalized digital smile design. VisagiSMile is a multiplatform web application for aesthetic dentistry which does not require installation, but only a simple registration process to get started. All cases and data are stored on a server to allow dentists to work on different devices and platforms – computers, tablets and smartphones. The research on the visagism concept is an ongoing process which constantly changes the requirements for the software. With the ongoing development of the software as an agile web application new versions are released every few weeks. Future plans include improvement of the accuracy of algorithms and of the teeth designs. Together with the product development, VisagiSMile’s user base also grows with over 1000 currently registered dentists.

Articles Software Development Web Technologies

Software Application for Smile Design Automation Using the Visagism Theory

Abstract: The visagism concept in dentistry tries to achieve the most appropriate smile design for every individual patient. The design is based on facial analysis, the patient’s personality and their preferences, and is calculated and visualized as a teeth configuration. The paper presents VisagiSMile — aesthetic dentistry software which automates the theory of dental visagism. The goal of VisagiSMile is to automate this process of creating aesthetic cases and to eliminate the human factor from the analysis. Based on innovative data mining approach, the software learns to classify patients’ faces correctly and then makes the necessary calculations to produce harmonious teeth configuration which can be further adjusted.

Articles Entrepreneurship

Методология за предсказване на успеха на стартиращи компании

Резюме: Методиката и моделите за предсказване на успеха на стартиращи компании, представени в статията, са резултат от тригодишно проучване на предприемаческата екосистема в България. Предложени са модел на процеса на създаване на компания и модел за предсказване на успеха, които са базирани на проведено качествено изследване. Проведено е и количествено изследване върху набор от данни за 136 компании. Чрез прилагането на метода факторен анализ, са потвърдени предложените в модела категории и подкатегории фактори, определящи успеха на стартиращите компании. С помощта на софтуерните продукти за извличане на знания от данни – IBM SPSS Modeler и Weka са синтезирани класификационни модели, които с висока точност предсказват успеха. Получените резултати са приложени и внедрени в I3SP – информационна система за предсказване на успеха на стартиращи компании.

Abstract: The methodology and the success prediction models presented in the articles are results from three years of research of the entrepreneurial ecosystem in Bulgaria. A model of the process of creating a company and a success prediction model have been proposed, based on the conducted qualitative research. A qualitative research on a dataset for 136 companies has been conducted. The method factor analysis confirms the proposed categories and subcategories of factors in the model, which determine the success of start-ups. Classification models, which predict the success of start-ups with high accuracy, have been synthesized by applying the data mining software products IBM SPSS Modeler and Weka. The results are applied and implemented in I3SP – Information System for Start-ups Success Prediction.


Методология за предсказване на успеха за технологични стартиращи компании в България – дисертация

Дисертация на тема: Методология за предсказване на успеха за технологични стартиращи компании в България – Модели и софтуер за прогнозиране на успеха на стартиращи компании

Структура на дисертацията

Текстът на дисертацията е организиран в 5 глави, списък на фигурите, списък на таблиците, основни използвани термини, заключение, библиография и 3 приложения.

Articles Entrepreneurship

Сравнение на класификационни модели за стартиращи компании

Резюме: Проведено е количествено изследване на факторите за успех на стартиращи компании от България. Наборът от данни за 136 компании е анализиран с помощта на софтуерните продукти за извличане на знания от данни – IBM SPSS Modeler и Weka. Като резултат са синтезирани класификационни модели за предсказване на успеха на стартиращи компании от България. Получените модели са анализирани и сравнени, като са избрани най-точните и ефективни модели. Идентифицирани са факторите за успех на компаниите, включени в моделите, както и принципът на вземане на решение за тяхната класификация.

Автори: Янков, Б.

Software Development

Arduino Sketch That Plays Melodies

This is a simple Arduino sketch that can play various melodies . It can be used for fun as a toy. The melodies are changed by pressing a pushbutton. You can easily add new melodies, if you know the notes.


Detailed Model of a Successful Startup

Have you ever wondered which factors make a successful startup stand out? I have prepared a model that lists the factors of importance for the success of young companies.

Entrepreneurial Team

  • Personality and Values
    • Authonomy
    • Confidence
    • Initiative
    • Locus of Control
    • Need for Achievement
    • Risk-taking Propensity
    • Tolerance of Ambiguity
  • Skills and Experience
    • Entrepreneurship Skills
    • Management Skills
    • Marketing Skills
    • Technical Skills
    • Human Resources Skills
    • Investment Skills
    • Start-up Experience
    • Experience in Similar Position
    • Industry Experience
    • General Management Experience
    • Formal Education
    • Field of Education
    • Age of Entrepreneur
    • Entrepreneurial Parents
  • Teamwork
    • Team Completeness
    • Team Knowledge
    • Team Skill
    • Team Attitude
Articles Entrepreneurship

Models and Tools for Technology Start-Up Companies Success Analysis

Abstract: The designs presented in the article are fastened in the authors’ years-long research on entrepreneurship and business model innovations. A quantitative research was performed to derive a model for predicting the success of Bulgarian startup companies. The authors started this research with in-depth inquiries of start-up companies in Bulgaria. Under our guidance, several research analysts investigated each start-up using approximately 100 questions. The preceding research stages included an overview and an analysis of existing success prediction models, a new abstract success prediction model, a venture creation process model and a qualitative research. The abstract success prediction model was extended with measurable variables with the help of a quantitative research of Bulgarian entrepreneurs. The current dataset of companies has been enriched with more cases and has been analyzed using data mining software: IBM SPSS Modeler, which automatically tests different models and suggests the best performing ones and also with the open source product Weka. The best derived model is a classification tree that correctly predicts the success of technology start-ups from the dataset in 83,76% of the test cases. The analysis revealed the answers to challenges and questions that start-up companies face and implemented a model that was deployed into an information system for start-ups success prediction. The developed information system will help to predict the success of start-ups. The software will evolve iteratively, and by involving more companies to use it, will grow its database.